Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.215
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 231, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679696

RESUMEN

BACKGROUND: Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS: HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS: ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION: PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.


Asunto(s)
Antiinflamatorios , Apoptosis , Biflavonoides , Catequina , Células Endoteliales de la Vena Umbilical Humana , Lipoproteínas LDL , FN-kappa B , Estrés Oxidativo , Proantocianidinas , Transducción de Señal , Humanos , Lipoproteínas LDL/toxicidad , Catequina/farmacología , Proantocianidinas/farmacología , Estrés Oxidativo/efectos de los fármacos , Biflavonoides/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología , Antioxidantes/farmacología , Células THP-1 , Quimiotaxis de Leucocito/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/genética
2.
Bioorg Med Chem Lett ; 106: 129762, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38649117

RESUMEN

Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.


Asunto(s)
Lipoproteínas LDL , Neoplasias , Humanos , Lipoproteínas LDL/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Animales
3.
Gene ; 916: 148450, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-38588932

RESUMEN

BACKGROUND: Although the implication of receptor of advanced glycation endproducts (RAGE) has been reported in coronary artery disease, its roles in coronary artery ectasia (CAE) have remained undetermined. Furthermore, the effect of RAGE polymorfisms were not well-defined in scope of soluble RAGE (sRAGE) levels. Thus, we aimed to investigate the influence of the functional polymorphisms of RAGE -374T > A (rs1800624) and G82S (rs2070600) in CAE development. METHODS: This prospective observational study was conducted in 2 groups selected of 2452 patients who underwent elective coronary angiography (CAG) for evaluation after positive noninvasive heart tests. Group-I included 98 patients with non-obstructive coronary artery disease and CAE, and Group-II (control) included 100 patients with normal coronary arteries. SNPs were genotyped by real-time PCR using Taqman® genotyping assay. Serum sRAGE and soluble lectin-like oxidized receptor-1 (sOLR1) were assayed by ELISA and serum lipids were measured enzymatically. RESULTS: The frequencies of the RAGE -374A allele and -374AA genotype were significantly higher in CAE patients compared to controls (p < 0.001). sRAGE levels were not different between study groups, while sOLR1 levels were elevated in CAE (p = 0.004). In controls without systemic disease, -374A allele was associated with low sRAGE levels (p < 0.05), but this association was not significant in controls with HT. Similarly, sRAGE levels of CAE patients with both HT and T2DM were higher than those no systemic disease (p = 0.02). The -374A allele was also associated with younger patient age and higher platelet count in the CAE group in both total and subgroup analyses. In the correlation analyses, the -374A allele was also negatively correlated with age and positively correlated with Plt in all of these CAE groups. In the total CAE group, sRAGE levels also showed a positive correlation with age and a negative correlation with HDL-cholesterol levels. On the other hand, a negative correlation was observed between sRAGE and Plt in the total, hypertensive and no systemic disease control subgroups. Multivariate logistic regression analysis confirmed that the -374A allele (p < 0.001), hyperlipidemia (p < 0.05), and high sOLR1 level (p < 0.05) are risk factors for CAE. ROC curve analysis shows that RAGE -374A allele has AUC of 0.713 (sensitivity: 83.7 %, specificity: 59.0 %), which is higher than HLD (sensitivity: 59.2 %, specificity: 69.0 %), HT (sensitivity: 62.4 %, specificity: 61.1 %) and high sOLR1 level (≥0.67 ng/ml)) (sensitivity: 59.8 %, specificity: 58.5 %). CONCLUSION: Beside the demonstration of the relationship between -374A allele and increased risk of CAE for the first time, our results indicate that antihypertensive and antidiabetic treatment in CAE patients causes an increase in sRAGE levels. The lack of an association between the expected -374A allele and low sRAGE levels in total CAE group was attributed to the high proportion of hypertensive patients and hence to antihypertensive treatment. Moreover, the RAGE -374A allele is associated with younger age at CAE and higher Plt, suggesting that -374A may also be associated with platelet activation, which plays a role in the pathogenesis of CAE. However, our data need to be confirmed in a large study for definitive conclusions.


Asunto(s)
Enfermedad de la Arteria Coronaria , Polimorfismo de Nucleótido Simple , Receptor para Productos Finales de Glicación Avanzada , Humanos , Femenino , Masculino , Persona de Mediana Edad , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/sangre , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/sangre , Estudios Prospectivos , Anciano , Dilatación Patológica/genética , Predisposición Genética a la Enfermedad , Receptores Depuradores de Clase E/genética , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Estudios de Casos y Controles , Alelos , Angiografía Coronaria , Frecuencia de los Genes , Genotipo , Proteínas Relacionadas con Receptor de LDL , Proteínas de Transporte de Membrana
4.
J Clin Lab Anal ; 38(6): e25026, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38506378

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is a devastating illness and a leading cause of death worldwide, primarily caused by atherosclerosis resulting from a genetic-environmental interaction. This study aimed to investigate the relationship between the ESR1 (rs9340799), OLR1 (rs3736234), LIPC (rs2070895), VDR (rs2228570), and CETP (rs708272) polymorphisms, lipid profile parameters, and CAD risk in a southeast Iranian population. METHODS: A total of 400 subjects (200 CAD patients with hyperlipidemia and 200 healthy controls) were enrolled in this case-control study. Five selected polymorphisms were genotyped using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. RESULTS: For all single nucleotide polymorphisms (SNPs), the population under study was in the Hardy-Weinberg equilibrium. The T-risk allele frequency of rs2228570 was associated with an increased risk of CAD. The TT and CT genotypes of rs2228570 had also been associated with the risk of CAD. Additionally, the TT genotype was associated with higher serum low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) levels. The GG genotype of the rs3736234 was associated with higher body mass index (BMI) and triglyceride (TG) levels, and the AA genotype of the rs708272 was associated with higher HDL-c levels. Based on these findings, we propose that the VDR (rs2228570) polymorphism was associated with serum HDL-c and LDL-c levels and may serve as potential risk factors for CAD within the Iranian population. Moreover, rs3736234 and rs708272 influence the concentrations of TG and HDL-c, respectively. CONCLUSION: These findings provided insights into the complex interplay between genetic variations, cardiovascular risk, and lipid metabolism.


Asunto(s)
Enfermedad de la Arteria Coronaria , Humanos , Estudios de Casos y Controles , Proteínas de Transferencia de Ésteres de Colesterol/genética , LDL-Colesterol , Enfermedad de la Arteria Coronaria/epidemiología , Enfermedad de la Arteria Coronaria/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genotipo , Irán/epidemiología , Polimorfismo de Nucleótido Simple , Receptores de Calcitriol/genética , Receptores Depuradores de Clase E/genética
5.
Mediators Inflamm ; 2024: 5830491, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38445291

RESUMEN

Atherosclerosis is a leading cause of death in the world. A significant body of evidence suggests that inflammation and various players are implicated and have pivotal roles in the formation of atherosclerotic plaques. Toll-like receptor 4 (TLR4) is linked with different stages of atherosclerosis. This receptor is highly expressed in the endothelial cells (ECs) and atherosclerotic plaques. TLR4 activation can lead to the production of inflammatory cytokines and related responses. Lectin-like oxidized low-density lipoprotein-1 (LOX-1), an integral membrane glycoprotein with widespread expression on the ECs, is involved in atherosclerosis and has some common pathways with TLR4 in atherosclerotic lesions. In addition, proprotein convertase subtilisin/kexin type9 (PCSK9), which is a regulatory enzyme with different roles in cholesterol uptake, is implicated in atherosclerosis. At present, TLR4, PCSK9, and LOX-1 are increasingly acknowledged as key players in the pathogenesis of atherosclerotic cardiovascular diseases. Herein, we presented the current evidence on the structure, functions, and roles of TLR4, PCSK9, and LOX-1 in atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Subtilisina , Proproteína Convertasa 9 , Receptor Toll-Like 4 , Lipoproteínas LDL , Células Endoteliales , Proproteína Convertasas , Lectinas , Receptores Depuradores de Clase E
6.
Funct Plant Biol ; 512024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38220246

RESUMEN

Soybean (Glycine max ) is the world's most widely grown seed legume. One of the most important pests that decrease seed quality and reduce yield of soybean crops is the southern green stink bug (Nezara viridula ). Insect damage triggers accumulation of defensive compounds such as protease inhibitors (PIs), isoflavonoids and reactive oxygen species, which are regulated by the lipoxygenase (LOX)-regulated jasmonic acid (JA) to stop insect feeding. This study identified and characterised the role of LOX isoforms in the modulation of chemical defences in seeds of field-grown soybean that decreased digestive enzyme activities of N. viridula after insect attack. Stink bugs attack increased LOX 1 and LOX 2 expression, and activities of LOX 1 and LOX 3 isoenzymes in developing soybean seeds. In addition, stink bug damage and methyl jasmonate application induced expression and activity of both cysteine PIs and trypsin PIs in developing soybean seeds, suggesting that herbivory induced JA in soybean seeds. High PI activity levels in attacked seeds decreased cysteine proteases and α-amylases activities in the gut of stink bugs that fed on field-grown soybean. We demonstrated that LOX isoforms of seeds are concomitantly induced with JA-regulated PIs by stink bugs attack, and these PIs inhibit the activity of insect digestive enzymes. To our knowledge, this is the first study to investigate the participation of LOX in modulating JA-regulated defences against stink bugs in seeds of field-grown soybean, and our results suggest that soybean PIs may inhibit α-amylase activity in the gut of N. viridula .


Asunto(s)
Ciclopentanos , Glycine max , Heterópteros , Oxilipinas , Animales , Lipooxigenasas , Semillas , Heterópteros/fisiología , Isoformas de Proteínas , Inhibidores Enzimáticos , Receptores Depuradores de Clase E
7.
Acta Diabetol ; 61(4): 515-524, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38244081

RESUMEN

AIMS: Diabetic osteoporosis (DOP) is the most common secondary form of osteoporosis. Diabetes mellitus affects bone metabolism; however, the underlying pathophysiological mechanisms remain unclear. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) expression is upregulated in conditions characterized by vascular injury, such as atherosclerosis, hypertension, and diabetes. Additionally, Notch, HIF-1α, and VEGF are involved in angiogenesis and bone formation. Therefore, we aimed to investigate the expression of Notch, HIF-1α, and VEGF in the LOX-1 silencing state. METHODS: Rat bone H-type vascular endothelial cells (THVECs) were isolated and cultured in vitro. Cell identification was performed using immunofluorescent co-expression of CD31 and Emcn. Lentiviral silencing vector (LV-LOX-1) targeting LOX-1 was constructed using genetic recombination technology and transfected into the cells. The experimental groups included the following: NC group, HG group, LV-LOX-1 group, LV-CON group, HG + LV-LOX-1 group, HG + LV-CON group, HG + LV-LOX-1 + FLI-06 group, HG + LV-CON + FLI-06 group, HG + LV-LOX-1 + LW6 group, and HG + LV-CON + LW6 group. The levels of LOX-1, Notch, Hif-1α, and VEGF were detected using PCR and WB techniques to investigate whether the expression of LOX-1 under high glucose conditions has a regulatory effect on downstream molecules at the gene and protein levels, as well as the specific molecular mechanisms involved. RESULTS: High glucose (HG) conditions led to a significant increase in LOX-1 expression, leading to inhibition of angiogenesis, whereas silencing LOX-1 can reverse this phenomenon. Further analysis reveals that changes in LOX-1 will promote changes in Notch/HIF-1α and VEGF. Moreover, Notch mediates the activation of HIF-1α and VEGF. CONCLUSIONS: The activation of LOX-1 and the inhibition of Notch/HIF-1α/VEGF in THVECs are the main causes of DOP. These findings contribute to our understanding of the pathogenesis of DOP and offer a novel approach for preventing and treating osteoporosis.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Osteoporosis , Animales , Ratas , Células Endoteliales/metabolismo , Glucosa , Hiperglucemia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Receptores Depuradores de Clase E/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
J Innate Immun ; 16(1): 105-132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38232720

RESUMEN

BACKGROUND: Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is known as a major receptor for oxidized low-density lipoproteins (oxLDL) and plays a significant role in the genesis of atherosclerosis. Recent research has shown its involvement in cancer, ischemic stroke, and diabetes. LOX-1 is a C-type lectin receptor and is involved in the activation of immune cells and inflammatory processes. It may further interact with pathogens, suggesting a role in infections or the host's response. SUMMARY: This review compiles the current knowledge of potential implications of LOX-1 in inflammatory processes and in host-pathogen interactions with a particular emphasis on its regulatory role in immune responses. Also discussed are genomic and structural variations found in LOX-1 homologs across different species as well as potential involvements of LOX-1 in inflammatory processes from the angle of different cell types and organ-specific interactions. KEY MESSAGES: The results presented reveal both similar and different structures in human and murine LOX-1 and provide clues as to the possible origins of different modes of interaction. These descriptions raise concerns about the suitability, particularly of mouse models, that are often used in the analysis of its functionality in humans. Further research should also aim to better understand the mostly unknown binding and interaction mechanisms between LOX-1 and different pathogens. This pursuit will not only enhance our understanding of LOX-1 involvement in inflammatory processes but also identify potential targets for immunomodulatory approaches.


Asunto(s)
Interacciones Huésped-Patógeno , Inflamación , Receptores Depuradores de Clase E , Animales , Humanos , Ratones , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inflamación/inmunología , Lipoproteínas LDL/metabolismo , Receptores Depuradores de Clase E/metabolismo , Receptores Depuradores de Clase E/genética
9.
Nat Commun ; 15(1): 669, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253620

RESUMEN

The role of N6-methyladenosine (m6A) modification of host mRNA during bacterial infection is unclear. Here, we show that Helicobacter pylori infection upregulates host m6A methylases and increases m6A levels in gastric epithelial cells. Reducing m6A methylase activity via hemizygotic deletion of methylase-encoding gene Mettl3 in mice, or via small interfering RNAs targeting m6A methylases, enhances H. pylori colonization. We identify LOX-1 mRNA as a key m6A-regulated target during H. pylori infection. m6A modification destabilizes LOX-1 mRNA and reduces LOX-1 protein levels. LOX-1 acts as a membrane receptor for H. pylori catalase and contributes to bacterial adhesion. Pharmacological inhibition of LOX-1, or genetic ablation of Lox-1, reduces H. pylori colonization. Moreover, deletion of the bacterial catalase gene decreases adhesion of H. pylori to human gastric sections. Our results indicate that m6A modification of host LOX-1 mRNA contributes to protection against H. pylori infection by downregulating LOX-1 and thus reducing H. pylori adhesion.


Asunto(s)
Adenosina , Infecciones por Helicobacter , Helicobacter pylori , Receptores Depuradores de Clase E , Animales , Humanos , Ratones , Adenosina/análogos & derivados , Catalasa/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , ARN Mensajero/genética , Receptores Depuradores de Clase E/genética
10.
Bone Res ; 12(1): 5, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38263167

RESUMEN

Enhanced osteoclastogenesis and osteoclast activity contribute to the development of osteoporosis, which is characterized by increased bone resorption and inadequate bone formation. As novel antiosteoporotic therapeutics are needed, understanding the genetic regulation of human osteoclastogenesis could help identify potential treatment targets. This study aimed to provide an overview of transcriptional reprogramming during human osteoclast differentiation. Osteoclasts were differentiated from CD14+ monocytes from eight female donors. RNA sequencing during differentiation revealed 8 980 differentially expressed genes grouped into eight temporal patterns conserved across donors. These patterns revealed distinct molecular functions associated with postmenopausal osteoporosis susceptibility genes based on RNA from iliac crest biopsies and bone mineral density SNPs. Network analyses revealed mutual dependencies between temporal expression patterns and provided insight into subtype-specific transcriptional networks. The donor-specific expression patterns revealed genes at the monocyte stage, such as filamin B (FLNB) and oxidized low-density lipoprotein receptor 1 (OLR1, encoding LOX-1), that are predictive of the resorptive activity of mature osteoclasts. The expression of differentially expressed G-protein coupled receptors was strong during osteoclast differentiation, and these receptors are associated with bone mineral density SNPs, suggesting that they play a pivotal role in osteoclast differentiation and activity. The regulatory effects of three differentially expressed G-protein coupled receptors were exemplified by in vitro pharmacological modulation of complement 5 A receptor 1 (C5AR1), somatostatin receptor 2 (SSTR2), and free fatty acid receptor 4 (FFAR4/GPR120). Activating C5AR1 enhanced osteoclast formation, while activating SSTR2 decreased the resorptive activity of mature osteoclasts, and activating FFAR4 decreased both the number and resorptive activity of mature osteoclasts. In conclusion, we report the occurrence of transcriptional reprogramming during human osteoclast differentiation and identified SSTR2 and FFAR4 as antiresorptive G-protein coupled receptors and FLNB and LOX-1 as potential molecular markers of osteoclast activity. These data can help future investigations identify molecular regulators of osteoclast differentiation and activity and provide the basis for novel antiosteoporotic targets.


Asunto(s)
Osteoclastos , Osteogénesis , Humanos , Femenino , Biopsia , Densidad Ósea , Filaminas , Receptores Depuradores de Clase E
11.
Exp Eye Res ; 238: 109727, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37972749

RESUMEN

Obesity is a significant health concern that leads to impaired vascular function and subsequent abnormalities in various organs. The impact of obesity on ocular blood vessels, however, remains largely unclear. In this study, we examined the hypothesis that obesity induced by high-fat diet produces vascular endothelial dysfunction in the ophthalmic artery. Mice were subjected to a high-fat diet for 20 weeks, while age-matched controls were maintained on a standard diet. Reactivity of isolated ophthalmic artery segments was assessed in vitro. Reactive oxygen species (ROS) were quantified in cryosections by dihydroethidium (DHE) staining. Redox gene expression was determined in ophthalmic artery explants by real-time PCR. Furthermore, the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), the receptor for advanced glycation end products (RAGE), and of the lectin-like oxidized low-density-lipoprotein receptor-1 (LOX-1) was determined in cryosections using immunofluorescence microscopy. Ophthalmic artery segments from mice on a high-fat diet exhibited impaired vasodilation responses to the endothelium-dependent vasodilator acetylcholine, while endothelium-independent responses to nitroprusside remained preserved. DHE staining intensity in the vascular wall was notably stronger in mice on a high-fat diet. Messenger RNA expression for NOX2 was elevated in the ophthalmic artery of mice subjected to high fat diet. Likewise, immunostainings revealed increased expression of NOX2 and of RAGE, but not of LOX-1. These findings suggest that a high-fat diet triggers endothelial dysfunction by inducing oxidative stress in the ophthalmic artery via involvement of RAGE and NOX2.


Asunto(s)
Dieta Alta en Grasa , Arteria Oftálmica , Enfermedades Vasculares , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/metabolismo , Obesidad , Arteria Oftálmica/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo , Enfermedades Vasculares/metabolismo , Vasodilatación
12.
Acta Diabetol ; 61(1): 43-52, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37668684

RESUMEN

AIMS: Type 2 diabetes mellitus (T2DM) and hypertension are common high-incidence diseases, closely related, and have common pathogenic basis such as oxidative stress. Casein kinase 2 interacting protein-1 (CKIP-1) and low-density lipoprotein receptor (LOX-1) are considered to be important factors affect the level of oxidative stress in the body. The main purpose of this study was to explore the relationship between CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 (rs1050283 G > A, rs11053646 C > G) polymorphisms and the risk of hypertension and diabetes, and try to find new candidate genes for diabetes and diabetes with hypertension etiology in Chinese population. METHODS: 574 T2DM patients and 597 controls frequently matched by age and sex were selected for genotyping of CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 gene (rs1050283 G > A, rs11053646 C > G). Logistic regression was used to analyze the correlation between different genotypes and the risk of T2DM and T2DM with hypertension, and the results were expressed as odds ratio (OR) and 95% confidence interval (95% CI). RESULTS: We found that the risk of T2DM in the AA + AT genotype of rs6693817 was higher than that in the TT genotype in Chinese population (OR = 1.318, 95%CI: 1.011-1.717, P = 0.041), and the difference was still significant after adjustment (OR = 1.370, 95%CI: 1.043-1.799, Padjusted = 0.024), the difference of heterozygotes (AT vs TT: OR = 1.374, 95%CI: 1.026-1.840, Padjusted = 0.033) was statistically significant. But after Bonferroni correction, the significance of the above sites disappeared. And rs6693817 was associated with the risk of T2DM combined with hypertension before and after adjustment in dominant model (OR = 1.424, 95% CI: 1.038-1.954, P = 0.028; OR = 1.460, 95% CI: 1.057-2.015, Padjusted = 0.021, respectively) and in heterozygote model (OR = 1.499, 95% CI: 1.069-2.102, P = 0.019; OR = 1.562, 95% CI: 1.106-2.207, Padjusted = 0.011, respectively). However, only the statistical significance of the heterozygous model remained after Bonferroni correction. rs2306235, rs1050283 and rs11053646 were not significantly correlated with T2DM and T2DM combined with hypertension risk (P > 0.05). CONCLUSIONS: The results suggest that CKIP-1 rs6693817 is related to the susceptibility of Chinese people to T2DM with hypertension, providing a new genetic target for the treatment of diabetes with hypertension with in the future.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pueblos del Este de Asia , Hipertensión , Adulto , Humanos , Estudios de Casos y Controles , China/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Pueblos del Este de Asia/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo de Nucleótido Simple , Receptores Depuradores de Clase E/genética , Hipertensión/epidemiología , Hipertensión/genética
13.
Curr Probl Cardiol ; 49(1 Pt C): 102117, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37802161

RESUMEN

Low-density lipoprotein (LDL) and oxidized LDL (oxLDL) are major contributors to atherogenesis, as endogenous antigens, via several receptors such as LOX 1. A PubMed search was conducted in order to identify relevant articles regarding LOX-1's role in the atherosclerosis, diagnosis, prognostic use and molecules that could be used for therapy. The references of the manuscripts obtained were also reviewed, in order to find additional relevant bibliography. LOX-1 is a lectin-like pattern recognition receptor, mostly expressed in endothelial cells (ECs) which can bind a variety of molecules, including oxLDL and C-reactive protein (CRP). LOX-1 plays a key role in oxLDL's role as a causative agent of atherosclerosis through several pathologic mechanisms, such as oxLDL deposition in the subintima, foam cell formation and endothelial dysfunction. Additionally, LOX-1 acts a scavenger receptor for oxLDL in macrophages and can be responsible for oxLDL uptake, when stimulated. Serum LOX-1 (sLOX-1) has emerged as a new, potential biomarker for diagnosis of acute coronary syndromes, and it seems promising for use along with other common biomarkers in everyday clinical practice. In a therapeutic perspective, natural as well as synthetic molecules exert anti-LOX-1 properties and attain the receptor's pathophysiological effects, thus extensive research is ongoing to further evaluate molecules with therapeutic potential. However, most of these molecules need further trials in order to properly assess their safety and efficacy for clinical use. The aim of this review is to investigate LOX-1 role in atherogenesis and explore its potential as diagnostic tool and therapeutic target.


Asunto(s)
Aterosclerosis , Células Endoteliales , Humanos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Receptores Depuradores de Clase E/metabolismo , Aterosclerosis/diagnóstico , Aterosclerosis/etiología
14.
Tissue Cell ; 86: 102290, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103473

RESUMEN

Accelerating the repair of damaged endothelium can effectively inhibit the progression of atherosclerosis (AS). Transient receptor potential channel TRPM4 is a non-selective cation channel activated by internal Ca2+, which is expressed in endothelial cells. This study aimed to reveal the potential role of TRPM4 in AS along with the mechanism. Human coronary artery endothelial cells (HCAECs) induced by ox-LDL was regarded as an in vitro model. The impacts of TRPM4 knockdown on cellular inflammation response, oxidative stress, normal endothelial function and lipid peroxidation were evaluated. Given that ferroptosis promotes AS progression, the effects of TRPM4 on intracellular iron ions and ferroptosis-related proteins was determined. Afterwards, HCAECs were treated with ferroptosis inducer erastin, and the influence of ferroptosis in the cellular model was revealed. TRPM4 was elevated in response to ox-LDL treatment in HCAECs. TRPM4 knockdown reduced the inflammation response, oxidative stress and lipid peroxidation caused by ox-LDL, and maintained the normal function of HCAECs. Erastin treatment destroyed the impacts of TRPM4 knockdown that are beneficial for cells to resist ox-LDL, showing the enhancement of the above adverse factors. Together, this study found that TRPM4 knockdown reduced ox-LDL-induced inflammation, oxidative stress, and dysfunction in HCAECs, possibly via a mechanism involving Fe2+ and ferroptosis-related proteins.


Asunto(s)
Ferroptosis , Canales Catiónicos TRPM , Humanos , Receptores de LDL/metabolismo , Receptores de LDL Oxidadas/metabolismo , Células Endoteliales/metabolismo , Receptores Depuradores de Clase E/metabolismo , Células Cultivadas , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Vasos Coronarios/metabolismo , Proteínas/metabolismo , Inflamación/metabolismo , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
15.
Arch Biochem Biophys ; 752: 109870, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141905

RESUMEN

Our previous studies have shown that lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) is expressed in liver sinusoidal endothelial cells, and oxidized low-density lipoprotein induces liver sinusoidal dysfunction and defenestration through the LOX-1/ROS/NF-kB pathway, revealing that LOX-1 can mediate liver sinusoidal barrier function, involved in the regulation of non-alcoholic fatty liver disease. Here, we investigated whether, in the context of bone metabolic diseases, LOX-1 could affect bone quality and type H blood vessels in diabetic mice. We used db/db mice as model and found that LOX-1 knockdown can ameliorate bone quality and type H blood vessel generation in db/db mice. This further verifies our hypothesis that LOX-1 is involved in the regulation of bone quality and type H blood vessel homeostasis, thus inhibiting osteoporosis progression in db/db mice.


Asunto(s)
Diabetes Mellitus Experimental , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/metabolismo , Lipoproteínas LDL/metabolismo , FN-kappa B/metabolismo , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo
16.
Ann Med ; 55(2): 2296552, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38134912

RESUMEN

BACKGROUND: There is an unmet clinical need for novel therapies addressing the residual risk in patients receiving guideline preventive therapy for coronary heart disease. Experimental studies have identified a pro-atherogenic role of the oxidized LDL receptor LOX-1. We investigated the association between circulating soluble LOX-1 (sLOX-1) and the risk for development of myocardial infarction. METHODS: The study subjects (n = 4658) were part of the Malmö Diet and Cancer study. The baseline investigation was carried out 1991-1994 and the incidence of cardiovascular events monitored through national registers during a of 19.5 ± 4.9 years follow-up. sLOX-1 and other biomarkers were analyzed by proximity extension assay and ELISA in baseline plasma. RESULTS: Subjects in the highest tertile of sLOX-1 had an increased risk of myocardial infarction (hazard ratio (95% CI) 1.76 (1.40-2.21) as compared with those in the lowest tertile. The presence of cardiovascular risk factors was related to elevated sLOX-1, but the association between sLOX-1 and risk of myocardial infarction remained significant when adjusting for risk factors. CONCLUSIONS: In this prospective population study we found an association between elevated sLOX-1, the presence of carotid disease and the risk for first-time myocardial infarction. Taken together with previous experimental findings of a pro-atherogenic role of LOX-1, this observation supports LOX-1 inhibition as a possible target for prevention of myocardial infarction.


Activation of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) represents a possible target for treatment of the residual inflammatory risk in cardiovascular patients on guideline therapy.Having high levels of soluble LOX-1, a marker of cellular LOX-1 activation, is associated with an increased risk for development of myocardial infarction and heart failure.sLOX-1 levels correlated with major cardiovascular risk factors and biomarkers reflecting LDL oxidation.


Asunto(s)
Aterosclerosis , Infarto del Miocardio , Humanos , Estudios Prospectivos , Infarto del Miocardio/epidemiología , Factores de Riesgo , Receptores Depuradores de Clase E
17.
ACS Infect Dis ; 9(11): 2133-2140, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37910786

RESUMEN

The success of Staphylococcus aureus as a major cause for endovascular infections depends on effective interactions with blood-vessel walls. We have previously shown that S. aureus uses its wall teichoic acid (WTA), a surface glycopolymer, to attach to endothelial cells. However, the endothelial WTA receptor remained unknown. We show here that the endothelial oxidized low-density lipoprotein receptor 1 (LOX-1) interacts with S. aureus WTA and permits effective binding of S. aureus to human endothelial cells. Purified LOX-1 bound to isolated S. aureus WTA. Ectopic LOX-1 expression led to increased binding of S. aureus wild type but not of a WTA-deficient mutant to a cell line, and LOX-1 blockage prevented S. aureus binding to endothelial cells. Moreover, WTA and LOX-1 expression levels correlated with the efficacy of the S. aureus-endothelial interaction. Thus, LOX-1 is an endothelial ligand for S. aureus, whose blockage may help to prevent or treat severe endovascular infections.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Células Endoteliales , Ácidos Teicoicos/metabolismo , Receptores Depuradores/metabolismo , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo
18.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 150-154, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37953571

RESUMEN

To provide clinical evidence for the management of hypoxic-ischemic encephalopathy (HIE) by analyzing the role of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) and colony-stimulating factor-1 (CSF1) in the disease. We purchased 15 Sprague-Dawley (SD) rat pups and randomized them into five groups (n=3), of which one group was untreated as the control group and the other four were modeled by HIE. After modeling, a group was treated as a model group without any treatment, another group was injected with sLOX-1-silencing lentiviral vector (sLOX-1-si group), and the third and fourth were injected with CSF1-silencing lentiviral vector (CSF1-si group) and an equal amount of normal saline (blank group), respectively. After the corresponding intervention, the rat tissue in each group was obtained to observe the pathological injury by HE and TUNEL staining. In addition, sLOX-1, CSF1, 5-hydroxytryptamine (5-HT), dopamine (DA), and norepinephrine (NE) levels in brain tissue of each group were determined. The model group showed more severe pathological damage of the hippocampus and higher neuronal apoptosis than the control group. Besides, higher sLOX-1 and CSF1 levels and lower 5-HT, DA and NE contents were identified in the model group versus the control group (P<0.05). Compared with the blank group, sLOX-1-si and CSF1-si groups showed significantly alleviated hippocampal damage, inhibited neuronal apoptosis, reduced 5-HT, DA, NE, Bax, and cl-caspase-3, and increased Bcl-2 (P<0.05). Silencing sLOX-1 and CSF1 expression ameliorated the pathological injury of HIE and inhibited neuronal apoptosis.


Asunto(s)
Hipoxia-Isquemia Encefálica , Ratas , Animales , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/metabolismo , Hipoxia-Isquemia Encefálica/patología , Animales Recién Nacidos , Ratas Sprague-Dawley , Serotonina , Apoptosis , Receptores Depuradores de Clase E
19.
J Biol Chem ; 299(11): 105325, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37805141

RESUMEN

In multicellular organisms, a variety of lipid-protein particles control the systemic flow of triacylglycerides, cholesterol, and fatty acids between cells in different tissues. The chemical modification by oxidation of these particles can trigger pathological responses, mediated by a group of membrane proteins termed scavenger receptors. The lectin-like oxidized low-density lipoprotein (LOX-1) scavenger receptor binds to oxidized low-density lipoprotein (oxLDL) and mediates both signaling and trafficking outcomes. Here, we identified five synthetic proteins termed Affimers from a phage display library, each capable of binding recombinant LOX-1 extracellular (oxLDL-binding) domain with high specificity. These Affimers, based on a phytocystatin scaffold with loop regions of variable sequence, were able to bind to the plasma membrane of HEK293T cells exclusively when human LOX-1 was expressed. Binding and uptake of fluorescently labeled oxLDL by the LOX-1-expressing cell model was inhibited with subnanomolar potency by all 5 Affimers. ERK1/2 activation, stimulated by oxLDL binding to LOX-1, was also significantly inhibited (p < 0.01) by preincubation with LOX-1-specific Affimers, but these Affimers had no direct agonistic effect. Molecular modeling indicated that the LOX-1-specific Affimers bound predominantly via their variable loop regions to the surface of the LOX-1 lectin-like domain that contains a distinctive arrangement of arginine residues previously implicated in oxLDL binding, involving interactions with both subunits of the native, stable scavenger receptor homodimer. These data provide a new class of synthetic tools to probe and potentially modulate the oxLDL/LOX-1 interaction that plays an important role in vascular disease.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Receptores Depuradores de Clase E , Humanos , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/química , Receptores Depuradores de Clase E/metabolismo , Células HEK293 , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Lectinas/metabolismo
20.
Cardiovasc Diabetol ; 22(1): 293, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891556

RESUMEN

OBJECTIVE: Diabetic kidney disease (DKD) is characterized by the abnormal deposition of oxidized low-density lipoprotein (ox-LDL), which contributes to podocyte damage. Klotho, an aging suppressor that plays a critical role in protecting podocytes in DKD, is mainly expressed in kidney tubular epithelium and secreted in the blood. However, it has not been established whether Klotho can alleviate podocyte injury by inhibiting renal ox-LDL deposition, and the potential molecular mechanisms require further investigation. METHODS: We conducted a comprehensive analysis of serum and kidney biopsy samples obtained from patients diagnosed with DKD. Additionally, to explore the underlying mechanism of Klotho in the deposition of ox-LDL in the kidneys, we employed a mouse model of DKD with the Klotho genotype induced by streptozotocin (STZ). Furthermore, we conducted meticulous in vitro experiments on podocytes to gain further insights into the specific role of Klotho in the deposition of ox-LDL within the kidney. RESULTS: Our groundbreaking study unveiled the remarkable ability of the soluble form of Klotho to effectively inhibit high glucose-induced ox-LDL deposition in podocytes affected by DKD. Subsequent investigations elucidated that Klotho achieved this inhibition by reducing the expression of the insulin/insulin-like growth factor 1 receptor (IGF-1R), consequently leading to a decrease in the expression of Ras-related C3 botulinum toxin substrate 1 (RAC1) and an enhancement of mitochondrial function. Ultimately, this series of events culminated in a significant reduction in the expression of the oxidized low-density lipoprotein receptor (OLR1), thereby resulting in a notable decrease in renal ox-LDL deposition in DKD. CONCLUSION: Our findings suggested that Klotho had the potential to mitigate podocyte injury and reduced high glucose-induced ox-LDL deposition in glomerulus by modulating the IGF-1R/RAC1/OLR1 signaling. These results provided valuable insights that could inform the development of novel strategies for diagnosing and treating DKD.


Asunto(s)
Nefropatías Diabéticas , Proteínas Klotho , Podocitos , Animales , Humanos , Ratones , Diabetes Mellitus/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Glucosa/metabolismo , Riñón/metabolismo , Lipoproteínas LDL/metabolismo , Podocitos/metabolismo , Podocitos/patología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/farmacología , Receptores Depuradores de Clase E/metabolismo , Proteínas Klotho/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA